Hierarchy of folding and unfolding events of protein G, CI2, and ACBP from explicit-solvent simulations.
نویسندگان
چکیده
The study of the mechanism which is at the basis of the phenomenon of protein folding requires the knowledge of multiple folding trajectories under biological conditions. Using a biasing molecular-dynamics algorithm based on the physics of the ratchet-and-pawl system, we carry out all-atom, explicit solvent simulations of the sequence of folding events which proteins G, CI2, and ACBP undergo in evolving from the denatured to the folded state. Starting from highly disordered conformations, the algorithm allows the proteins to reach, at the price of a modest computational effort, nativelike conformations, within a root mean square deviation (RMSD) of approximately 1 Å. A scheme is developed to extract, from the myriad of events, information concerning the sequence of native contact formation and of their eventual correlation. Such an analysis indicates that all the studied proteins fold hierarchically, through pathways which, although not deterministic, are well-defined with respect to the order of contact formation. The algorithm also allows one to study unfolding, a process which looks, to a large extent, like the reverse of the major folding pathway. This is also true in situations in which many pathways contribute to the folding process, like in the case of protein G.
منابع مشابه
Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding.
The atomistic characterization of the transition state (TS) is a fundamental step to improve the understanding of the folding mechanism and the function of proteins. From a computational point of view, the identification of the conformations that build out the transition state is particularly cumbersome, mainly because of the large computational cost of generating a statistically sound set of f...
متن کاملComputer simulations of protein folding by targeted molecular dynamics.
We have performed 128 folding and 45 unfolding molecular dynamics runs of chymotrypsin inhibitor 2 (CI2) with an implicit solvation model for a total simulation time of 0.4 microseconds. Folding requires that the three-dimensional structure of the native state is known. It was simulated at 300 K by supplementing the force field with a harmonic restraint which acts on the root-mean-square deviat...
متن کاملSynergy between simulation and experiment in describing the energy landscape of protein folding.
Experimental data from protein engineering studies and NMR spectroscopy have been used by theoreticians to develop algorithms for helix propensity and to benchmark computer simulations of folding pathways and energy landscapes. Molecular dynamic simulations of the unfolding of chymotrypsin inhibitor 2 (CI2) have provided detailed structural models of the transition state ensemble for unfolding/...
متن کاملTargeted Molecular Dynamics Simulations of Protein Unfolding
The usefulness of targeted molecular dynamics (TMD) for the simulation of large conformational transitions is assessed in this work on the unfolding process of chymotrypsin inhibitor 2 (CI2). In TMD the force field is supplemented with a harmonic restraint which promotes either the increase of the conformational distance from the native state or the decrease of the distance from a target unfold...
متن کاملIncreasing temperature accelerates protein unfolding without changing the pathway of unfolding.
We have traditionally relied on extremely elevated temperatures (498K, 225 degrees C) to investigate the unfolding process of proteins within the timescale available to molecular dynamics simulations with explicit solvent. However, recent advances in computer hardware have allowed us to extend our thermal denaturation studies to much lower temperatures. Here we describe the results of simulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 134 4 شماره
صفحات -
تاریخ انتشار 2011